
	
	
	
	
	
	

	
	
	

Coordinated	Disclosure	of	Vulnerabilities		

in	McAfee	Security	Android	4.8.0.370 

	
	 	



1 Executive	summary	
Researchers	of	MRG	Effitas	tested	the	McAfee	Security	Android	application.	During	use,	we	
came	across	implementation	details,	which	might	undermine	the	Vendor’s	efforts	to	provide	
a	comprehensive	mobile	security	solution	with	the	potential	to	aid	users	in	case	of	encounters	
with	malware.	
	
Testing	covered	the	following	application	version.	
Application	name	 McAfee	Security	
Store	URL	 	 https://play.google.com/store/apps/details?id=com.wsandroid.suite	
Version		 	 4.8.0.370	
	
We	 considered	 the	 situation	 and	 opted	 for	 a	 responsible	 disclosure	 approach	 to	 aid	 the	
Vendor	in	their	efforts.	In	accordance	with	industry	standards,	we	disclose	the	issues	based	
on	Google’s	90-day	policy.	As	a	result,	after	a	90-day	plus	a	14-day	grace	period,	we	make	the	
discoveries	public.	For	further	details,	refer	to	the	following	URL.	
	
Disclosure	date:	06	April	17	
Grace	period	begins:	05	July	17	
Grace	period	ends:	19	July	17	
	
https://security.googleblog.com/2014/07/announcing-project-zero.html	
https://googleprojectzero.blogspot.hu/2015/02/feedback-and-data-driven-updates-to.html	

2 Vulnerability	description	
2.1 No	user	warning	on	rooted/compromised	devices	
Finding	
Testing	discovered	that	the	application	was	normally	installed	and	initialized	on	a	rooted	test	
device,	provided	with	a	dynamic	hooking	 framework	application	 (Xposed	 framework).	This	
scenario	is	a	highly	insecure	one,	as	the	hooking	framework	can	be	utilized	to	bypass	every	
security	measure	of	the	McAfee	Security	application.	This	is	by	no	means	something	that	an	
Android	security	suite	can	be	properly	prepared	for,	nevertheless	no	user	warning	has	been	
displayed	stating	that	the	entire	operation	of	the	suite	is	compromised.	
	
Risk	
As	a	result,	a	highly	sophisticated	piece	of	malware	using	dynamic	hooking	might	even	abuse	
the	application	to	convince	the	user	that	there	are	no	threats	on	the	device.	Note	that	no	
cloaking	has	taken	place	and	as	per	the	logs,	the	Xposed	installer	application	has	even	been	
scanned	by	the	application.	
	
Consider	the	following	scenario.	
1. The	Android	device	with	no	preliminary	protection,	gets	infected	by	a	highly	sophisticated	

piece	of	malware.	
2. The	users	suspects	that	there	might	be	something	going	on	and	opts	for	the	suite	to	run	a	

security	scan	on	his	device.	
3. Upon	installation	and	scanning,	no	warning	is	displayed	and	the	user	is	reassured	that	his	

device	is	clean	from	malware.	
	



Recommendation	
It	is	recommended	to	at	least	warn	the	user	in	such	clear	cases	that	there	might	be	something	
going	on	with	his	device	and	that	the	scan	results	are	not	trustworthy	in	any	way.	
	
Nevertheless,	 it	 is	 important	 to	 point	 out	 that	 reliable	 root	 detection	 is	 theoretically	
impossible	in	untrustworthy	environments	(such	as	a	user	controlled	Android	device).	When	
it	 comes	 to	 root	 detection,	 false	 positive	 errors	 are	 rather	 uncommon,	 however	 false	
negatives	 are	 more	 dangerous	 from	 security	 perspective.	 It	 is	 possible	 to	 install	 readily	
prepared	tools	to	fool	common	root	detection	methods	(e.g.	RootCloak),	however,	presence	
of	the	Xposed	installer	and	the	RootCloak	application	itself	is	a	good	indication	that	the	device	
has	been	rooted.	All	 in	all,	a	comprehensive	approach	 is	 recommended,	where	 the	user	 is	
notified	at	the	slightest	sign	of	deviation	from	a	‘clean’	device	state.		
	
As	an	alternate	approach,	it	is	possible	to	harden	the	application	itself	to	detect	tampering	
(both	off-line	patching	plus	re-packaging	and	runtime	hooking)	to	some	extent.	Should	any	of	
the	below	checks	fail,	assume	that	the	environment	is	tampered	with	and	notify	the	user.	Note	
that	even	a	careful	implementation	of	all	below	methods	can	only	raise	the	bar	in	terms	of	
attacker	skill,	motivation	and	expertise,	it	can	deter	and	detect	novice	users,	who	solely	rely	
on	off-the-shelf	tools.	
	

• Upon	startup,	check	if	the	package	has	debug	mode	enabled.	
• Regularly	check	the	signature	and	the	signing	key	of	the	app	package	if	it	deviates	from	

an	expected	value.	
• List	 the	 calling	 stack	 of	 security	 related	methods	 (such	 as	 certificate	 pinning,	 root	

detection	etc.)	Should	the	RootCloak	tool	be	used,	the	calling	stack	contains	elements	
that	are	clearly	not	from	the	originating	application.	
	

	
Figure	1	Evidence	of	dynamic	hooking	based	tampering	

	
For	further	information,	refer	to	the	following	whitepaper	(An	Android	Application	Protection	
Scheme	against	Dynamic	Reverse	Engineering	Attacks.	Lim,	Yeong	et	al.	Journal	of	Wireless	
Mobile	 Networks,	 Ubiquitous	 Computing,	 and	 Dependable	 Applications,	 issue	 September	
2016.)	
	
http://isyou.info/jowua/papers/jowua-v7n3-3.pdf	
	
	
	 	



2.2 No	certificate	pinning	
Finding	
Testing	revealed	that	the	application	does	not	utilize	certificate	pinning.	Instead,	it	utilizes	the	
OS	CA	store.	
	
Risk	
As	a	result,	it	is	trivial	to	bypass	certificate	validation	using	various	methods	(e.g	consider	a	
social	 engineering	 attack,	 where	 the	 user	 is	 asked	 to	 install	 a	 certificate	 authority	 on	 his	
Android	device).	Considering	the	fact	that	mobile	security	suites	are	intended	also	for	non-
security	conscious	users,	this	design	consideration	should	be	re-evaluated.	

	
When	 a	 new	package	 is	 installed	 the	 hash	 of	 the	 package	 is	 checked	 from	 a	 reputational	
perspective	within	the	cloud	service.	

	

	
	

Testing	revealed	that	an	intercepting	attacker	or	a	piece	of	malware	can	avoid	being	detected	
in	the	cloud	by	changing	the	submitted	hash	values.	
	
Note	that	the	risk	is	significantly	decreased	by	the	fact	that	the	application	does	not	solely	rely	
on	cloud	based	detection	methods,	off-line	analysis	also	takes	place.	
	
	 	



2.3 Traces	of	user	activity	stored	in	plain-text	format	
Finding	
Testing	revealed	that	the	application	maintains	traces	of	user	activity	within	the	sandbox.	For	
instance,	 the	 %sandbox%/databases/AP_SDK_DB_	 discloses	 applications	 that	 have	 been	
installed	since	the	initialisation	of	the	McAfee	suite,	even	if	the	application	has	been	removed	
from	the	device.	
	

	
Figure	2	Traces	of	user	activity	in	plain-text	format	

Risk	
An	analysis	of	 the	application	sandbox	reveals	 information	regarding	user	activity	 (e.g.	 the	
names	of	installed	applications).	The	risk	is	increased	by	the	fact	that	the	application	maintains	
the	log,	even	in	case	the	device	is	rooted.	
	
Recommendation	
It	is	recommended	to	encrypt	all	trace	of	user	activity,	even	within	the	sandbox.	Furthermore,	
the	user	should	be	provided	with	options	to	delete	all	traces	of	his	activity	from	the	sandbox	
using	the	application	GUI.	
	

3 Timeline	
2017.04.07	–	Vendor	notified,	no	response	received	
2017.05.10	–	Vendor	notified	again	
2017.05.29	–	Vendor	responded	
2017.07.26	–	Publication	of	the	report	


